Source code for hfai.datasets.imagenet21k
from typing import Callable, Optional
import pickle
from PIL import Image
from io import BytesIO
from ffrecord import FileReader
from .base import (
BaseDataset,
get_data_dir,
register_dataset
)
"""
Expected file organization:
[data_dir]
train.ffr
PART_00000.ffr
PART_00001.ffr
...
val.ffr
PART_00000.ffr
PART_00001.ffr
...
"""
[docs]@register_dataset
class ImageNet21K(BaseDataset):
"""
这是一个图像识别数据集
更多信息参考:https://github.com/Alibaba-MIIL/ImageNet21K
Args:
split (str): 数据集划分形式,包括:完整集(``full``)、训练集(``train``)或者验证集(``val``)
transform (Callable): transform 函数,对图片进行 transfrom,接受一张图片作为输入,输出 transform 之后的图片
check_data (bool): 是否对每一条样本检验校验和(默认为 ``True``)
miniset (bool): 是否使用 mini 集合(默认为 ``False``)
Returns:
pic, name, label (PIL.Image.Image, str, int): 返回的每个样本是一个元组,包括一个RGB格式的图片,图片名,以及代表这张图片类别的标签
Examples:
.. code-block:: python
from hfai.datasets import ImageNet21K
from torchvision import transforms
transform = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
])
dataset = ImageNet21K(split, transform)
loader = dataset.loader(batch_size=64, num_workers=4)
for pic, name, label in loader:
# training model
"""
def __init__(
self,
split: str,
transform: Optional[Callable] = None,
check_data: bool = True,
miniset: bool = False
) -> None:
super(ImageNet21K, self).__init__()
assert split in ["full", "train", "val"]
self.split = split
self.transform = transform
data_dir = get_data_dir()
if miniset:
data_dir = data_dir / "mini"
self.data_dir = data_dir / "ImageNet21K"
self.fname = self.data_dir / f"{split}.ffr"
self.reader = FileReader(self.fname, check_data)
def __len__(self):
return self.reader.n
def __getitem__(self, indices):
imgs_bytes = self.reader.read(indices)
samples = []
for i, bytes_ in enumerate(imgs_bytes):
img_bytes, name, label = pickle.loads(bytes_)
try:
img = Image.open(BytesIO(img_bytes)).convert("RGB")
except Exception as e:
continue
if self.transform:
img = self.transform(img)
samples.append((img, name, int(label)))
return samples