Source code for hfai.datasets.imagenet
from typing import Callable, Optional
import pickle
from ffrecord import FileReader
from .base import (
BaseDataset,
get_data_dir,
register_dataset
)
"""
Expected file organization:
[data_dir]
train.ffr
meta.pkl
PART_00000.ffr
PART_00001.ffr
...
val.ffr
meta.pkl
PART_00000.ffr
PART_00001.ffr
...
"""
[docs]@register_dataset
class ImageNet(BaseDataset):
"""
这是一个图像识别数据集
更多信息参考:https://image-net.org
Args:
split (str): 数据集划分形式,包括:训练集(``train``)或者验证集(``val``)
transform (Callable): transform 函数,对图片进行 transfrom,接受一张图片作为输入,输出 transform 之后的图片
check_data (bool): 是否对每一条样本检验校验和(默认为 ``True``)
miniset (bool): 是否使用 mini 集合(默认为 ``False``)
Returns:
pic, label (PIL.Image.Image, int): 返回的每个样本是一个元组,包括一个RGB格式的图片,以及代表这张图片类别的标签
Examples:
.. code-block:: python
from hfai.datasets import ImageNet
from torchvision import transforms
transform = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
])
dataset = ImageNet(split, transform)
loader = dataset.loader(batch_size=64, num_workers=4)
for pic, label in loader:
# training model
"""
def __init__(
self,
split: str,
transform: Optional[Callable] = None,
check_data: bool = True,
miniset: bool = False
) -> None:
super(ImageNet, self).__init__()
assert split in ["train", "val"]
self.split = split
self.transform = transform
data_dir = get_data_dir()
if miniset:
data_dir = data_dir / "mini"
self.data_dir = data_dir / "ImageNet"
self.fname = self.data_dir / f"{split}.ffr"
self.reader = FileReader(self.fname, check_data)
with open(self.data_dir / f"{split}.ffr" / "meta.pkl", "rb") as fp:
self.meta = pickle.load(fp)
def __len__(self):
return self.reader.n
def __getitem__(self, indices):
imgs_bytes = self.reader.read(indices)
samples = []
for i, bytes_ in enumerate(imgs_bytes):
img = pickle.loads(bytes_).convert("RGB")
label = self.meta["targets"][indices[i]]
samples.append((img, int(label)))
transformed_samples = []
for img, label in samples:
if self.transform:
img = self.transform(img)
transformed_samples.append((img, label))
return transformed_samples